metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Judith L. Kissick and Ann M. Chippindale*

Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, England

Correspondence e-mail: a.m.chippindale@reading.ac.uk

Key indicators

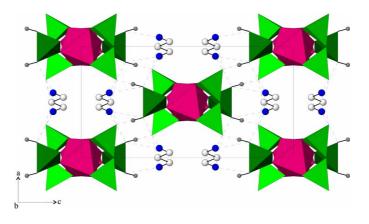
Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.028 wR factor = 0.074 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[NH₃(CH₂)₃NH₃][Ga(P₂O₇)(H₂PO₄)]: a new organically templated gallium phosphate-diphosphate

Received 14 January 2002

Accepted 22 January 2002


Online 8 February 2002

Propane-1,3-diammonium gallium phosphate diphosphate, $[NH_3(CH_2)_3NH_3][Ga(P_2O_7)(H_2PO_4)]$, consists of anionic chains containing GaO₆ octahedra linked by tetrahedral P_2O_7 diphosphate and PO₂(OH)₂ units charge-balanced by 1,3-diaminopropane dications. The chains, which are held together by a network of hydrogen bonds involving both interchain and chain-diamine interactions, are isostructural with those previously observed in $[NH_3(CH_2)_2NH_3][Ga-(P_2O_7)(H_2PO_4)]$. Different packing arrangements are, however, adopted in the two materials.

Comment

Reported here is the second example of an organically templated gallophosphate in which PO₄ and P₂O₇ groups coexist as independent units. The title compound, $[NH_3(CH_2)_3NH_3][Ga(P_2O_7)(H_2PO_4)]$, consists of one-dimensional polymeric gallium phosphate-diphosphate anions of formula $[Ga(P_2O_7)(H_2PO_4)]_x^{2-}$ running parallel to the *c* axis, which are charge-balanced by 1,3-diaminopropane dications lying in the interchain spaces (Fig. 1). The chains are isostructural with those found in $[NH_3(CH_2)_2NH_3][Ga-(P_2O_7)(H_2PO_4)]$ (Chippindale, 2000). However, the packing of the chains and amine dications is different in the two materials; the title compound crystallizes in *C*2/*c*, whereas $[NH_3(CH_2)_2NH_3][Ga(P_2O_7)(H_2PO_4)]$ (Crystallizes in *Cc*.

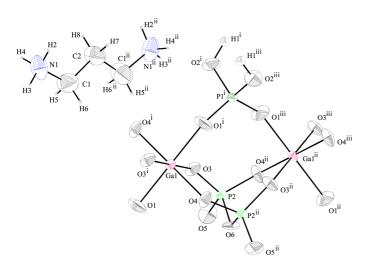

One crystallographically distinct Ga atom and two distinct P atoms are present in octahedral GaO_6 and tetrahedral-based PO₄ and P₂O₇ units with site symmetries $\overline{1}$, 2 and 1, respec-

Figure 1

View of $[NH_3(CH_2)_3NH_3][Ga(P_2O_7)(H_2PO_4)]$, showing the packing of the chains along the *c* axis and the interchain and chain–amine hydrogen bonding. Dark-green tetrahedra = PO_4, mid-green tetrahedra = P_2O_7, pink octahedra = GaO_6, blue spheres = N atoms, white spheres = C atoms and grey spheres = H atoms. Dashed red lines = interchain hydrogen bonds and dashed blue lines = chain–amine hydrogen bonds. Template H atoms have been omitted for clarity.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Local coordination of atoms in [NH₃(CH₂)₃NH₃][Ga(P₂O₇)(H₂PO₄)] (50% probability displacement ellipsoids). [Symmetry codes: (i) -x, -y, -z; (ii) -x, y, $-z + \frac{1}{2}$; (iii) x, -y, $z + \frac{1}{2}$.]

tively (Fig. 2). The GaO_6 octahedra share all their vertices with phosphorus-based bridging units. The P1-based phosphate group bridges adjacent Ga atoms via O1. The remaining P1-O2 bonds are substantially longer, consistent with the observation in difference Fourier maps of H atoms associated with these atoms. This is confirmed by bond-valence calculations (Brown & Altermatt, 1985). The P2-based diphosphate group has an eclipsed conformation and bridges the Ga atoms through O3-P2-O4 linkages. The P2-O6 bond is significantly longer than the other P2-O bonds but is of comparable length to P-O bonds of P-O-P diphosphate linkages in other metal diphosphates (Chippindale, 2000; Mandel, 1975). The remaining P2-O5 bond corresponds to a P-O bond with some degree of multiple-bond character.

The structure is held together by both interchain and chainamine hydrogen bonding. The P1-O2H groups of the $P1O_2(OH)_2$ units and the terminal P2-O5 groups of the diphosphate units in neighbouring chains are sufficiently close for hydrogen bonding to occur between them to generate a three-dimensional assembly. Additional hydrogen bonding occurs between the NH₃ group of the diaminocation and the framework atoms O2, O4 and O5 (Table 2).

Experimental

Single crystals of $[NH_3(CH_2)_3NH_3][Ga(P_2O_7)(H_2PO_4)]$ were prepared under solvothermal conditions. Ga2O3 (0.876 g) was dispersed in ethylene glycol (5.6 ml) by stirring, followed by addition of 1,3-diaminopropane (1.1 ml) and a small amount of $Si(OEt)_4$ which acts as a mineralizer. Aqueous H₃PO₄ (3 ml, 85 wt%) was then added and the gel stirred until homogeneous, sealed in a Teflon-lined steel autoclave, and heated at 433 K for 7 d. The solid product was collected by filtration, washed copiously with water, and dried in air at 353 K. A clear colourless crystal was isolated from the bulk sample for analysis. Powder X-ray diffraction and CHN analysis (calculated for C₃H₁₄GaN₂O₁₁P₃: C 8.65, H 3.39, N 6.72%; experimental: C 8.61, H 3.56, N 6.76%) showed that the sample was monophasic. This was confirmed by Energy Dispersive Analytical X-ray (EDAX) analysis performed using a Phillips CM20 Transmission Electron Microscope which showed that all crystallites contained Ga and P but no Si and had a Ga:P ratio of 0.33 (2). Thermogravimetric analysis using a Stanton Redcroft STA 1000 Thermal Analyser over the range 553-883 K, at a heating rate of 10 K min⁻¹ under flowing N₂, showed a smooth weight loss of 18.2%, over the range 553-883 K, to give a black X-ray amorphous product. Loss of 1,3-diaminopropane would correspond to a weight loss of 17.8%.

 $R_{\rm int} = 0.036$

 $\theta_{\rm max} = 74.2^\circ$

 $h = -10 \rightarrow 10$

 $k = -19 \rightarrow 19$

frequency: 60 min

intensity decay: 2.8%

 $w = 1/[\sigma^2(F_o^2) + (0.0406P)^2]$

+ 1.2495P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

 $l = -11 \rightarrow 0$ 3 standard reflections

Crystal data

$(C_{3}H_{12}N_{2})[Ga(P_{2}O_{7})(H_{2}PO_{4})]$	$D_{\rm x} = 2.235 {\rm Mg} {\rm m}^{-3}$
$M_r = 416.79$	Cu $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 23
a = 8.5390 (7) Å	reflections
b = 15.9795 (15) Å	$ heta=10 extstyle=27^\circ$
c = 9.2826 (6) Å	$\mu = 7.36 \text{ mm}^{-1}$
$\beta = 102.007 \ (5)^{\circ}$	T = 293 (2) K
$V = 1238.89 (17) \text{ Å}^3$	Needle, colourless
Z = 4	$0.30 \times 0.05 \times 0.03 \text{ mm}$

Data collection

Enraf–Nonius CAD-4
diffractometer
$\omega/2\theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.675, \ T_{\max} = 0.809$
2586 measured reflections
1267 independent reflections
1082 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ wR(F²) = 0.074 S=1.111267 reflections 99 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Ga1-O3	1.949 (2)	P2-O3	1.518 (2)
Ga1-O1	1.976 (2)	$P2-O4^{i}$	1.530 (2)
Ga1-O4	1.977 (2)	P2-O6	1.615 (1)
P1-O1	1.497 (2)	N1-C1	1.485 (3)
P1-O2	1.580 (2)	C1-C2	1.502 (3)
P2-O5	1.505 (2)		
O1 ⁱⁱ -Ga1-O1	180	O5-P2-O3	113.59 (10)
O3 ⁱⁱ -Ga1-O3	180	$O5-P2-O4^{i}$	111.03 (10)
O4-Ga1-O4 ⁱⁱ	180	$O3-P2-O4^{i}$	111.65 (9)
O3-Ga1-O1 ⁱⁱ	91.64 (7)	O5-P2-O6	106.84 (10)
O3-Ga1-O1	88.36 (7)	O3-P2-O6	107.07 (8)
O3-Ga1-O4	93.58 (7)	$O4^{i}$ -P2-O6	106.16 (7)
O1-Ga1-O4	90.21 (7)	P1-O1-Ga1	144.43 (11)
O3-Ga1-O4 ⁱⁱ	86.42 (7)	P2-O3-Ga1	135.12 (10)
O1-Ga1-O4 ⁱⁱ	89.79 (7)	P2 ⁱ -O4-Ga1	126.05 (10)
$O1^{iii}$ -P1-O1	117.08 (14)	$P2-O6-P2^{i}$	119.78 (14)
$O1^{iii}$ -P1-O2	110.44 (9)	N1-C1-C2	112.9 (2)
O1-P1-O2	107.11 (9)	$C1^{i}-C2-C1$	108.2 (3)
O2-P1-O2 ⁱⁱⁱ	103.88 (13)		

Symmetry codes: (i) $-x, y, \frac{1}{2} - z$; (ii) -x, -y, -z; (iii) $-x, y, -\frac{1}{2} - z$.

Table 2

Hydrogen-bonding geometry (Å, $^{\circ}$).						
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$\begin{array}{c} O2 - H1 \cdots O5^{i} \\ N1 - H2 \cdots O2^{ii} \\ N1 - H3 \cdots O4^{ii} \\ N1 - H4 \cdots O5^{iii} \end{array}$	0.97 (2) 0.89 0.89 0.89	1.56 (2) 2.10 2.00 1.87	2.526 (2) 2.810 (3) 2.862 (3) 2.755 (3)	179 (4) 136 163 175		

Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (ii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z; (iii) $-\frac{1}{2} - x$, $\frac{1}{2} - y$, -z.

The C, N and H template atoms and the framework H atoms were located in difference Fourier maps. The fractional coordinates and isotropic displacement parameters of the framework H atoms were refined. However, the template H atoms were placed geometrically during the final refinement procedure and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C/N)$.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: XCAD4 (Harms & Wocadlo, 1995); program(s) used to

solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Shape Software, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

AMC thanks the EPSRC for research grant GR/N37490.

References

- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chippindale, A. M. (2000). Chem. Mater. 12, 818-816.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Mandel, N. S. (1975). Acta Cryst. B31, 1730–1734.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Shape Software (1998). ATOMS. Shape Software, 521 Hidden Valley Rd., Kingsport, TN 37663, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.